Short Note

A proof that a discrete delta function is second-order accurate

J. Thomas Beale
Department of Mathematics, Duke University, Box 90320, Durham, NC 27708-0320, United States

Received 8 August 2007; accepted 5 November 2007
Available online 17 November 2007

Abstract

It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 77-90] gives a second-order accurate quadrature rule for surface integrals using values on a regular background grid. The delta function is found using a technique of Mayo [A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285-299]. It can be expressed naturally using a level set function. © 2007 Elsevier Inc. All rights reserved.

Keywords: Discrete delta function; Level set function; Surface integral

There is considerable interest in designing accurate discrete delta functions for surfaces in a domain covered by a rectangular grid. They can provide quadrature rules for surface integrals using values at regular grid points [2,10-12]. Such a rule is especially useful when the surface is represented by a level set function. In [10] Smereka constructed a discrete delta function as the truncation error in applying the discrete Laplacian to a "Green's function" for the exact delta function on the surface. To find the truncation error, he used the technique of Mayo $[7,8]$ for solving differential equations with interfacial conditions, in which jump conditions are built into the difference operators on a regular grid. (The immersed interface method [3,5], the EJIIM [13,9] and the ghost fluid method [6] are related to Mayo's technique.) Smereka also showed how to express this delta function in terms of a level set function. He conjectured that the resulting quadrature rule for surface integrals is second-order accurate and verified the accuracy in numerical examples. In this note we give a simple proof of this fact.

Suppose Γ is a closed curve in \mathbb{R}^{2} or a closed surface in \mathbb{R}^{3}, bounding a set which is contained in a rectangular domain Ω. The problem is to design a weight function $w^{\text {h }}$ at grid points on a square grid Ω_{h}, concentrated near Γ, so that, for any smooth function f defined near the curve Γ in \mathbb{R}^{2},

[^0]\[

$$
\begin{equation*}
\int_{\Gamma} f(x) \mathrm{d} s(x)=\sum_{i h \in \Omega_{h}} f(i h) w^{h}(i h) h^{2}+\mathrm{O}\left(h^{2}\right) \tag{1}
\end{equation*}
$$

\]

or near the surface Γ in \mathbb{R}^{3},

$$
\begin{equation*}
\int_{\Gamma} f(x) \mathrm{d} S(x)=\sum_{i h \in \Omega_{h}} f(i h) w^{h}(i h) h^{3}+\mathrm{O}\left(h^{2}\right) . \tag{2}
\end{equation*}
$$

Arclength and surface area are special cases. Smereka's w^{h} has support on the grid points $i h$ within distance h of Γ, i.e., $w^{h}(i h)=0$ at other points. We will prove that (2) holds, with w^{h} as in [10], assuming Γ is a smooth surface in \mathbb{R}^{3}. The case of a curve in \mathbb{R}^{2} is entirely similar.

Smereka's procedure is as follows: Let δ_{Γ} be the distribution, or generalized function, restricting to Γ; that is, for smooth f on Ω,

$$
\begin{equation*}
\int_{\Omega} f \delta_{\Gamma} \mathrm{d} x=\int_{\Gamma} f \mathrm{~d} S . \tag{3}
\end{equation*}
$$

Let g be the solution of

$$
\begin{equation*}
\Delta g=\delta_{\Gamma} \quad \text { in } \Omega, \quad g=0 \quad \text { on } \quad \partial \Omega . \tag{4}
\end{equation*}
$$

Assuming Γ is smooth, g is piecewise smooth, i.e., smooth and harmonic on each region bounded by Γ, with the jump conditions

$$
\begin{equation*}
[g]=0, \quad\left[\partial_{n} g\right]=1 \text { on } \Gamma, \tag{5}
\end{equation*}
$$

where ∂_{n} is the normal derivative on Γ. In fact g can be thought of as a single layer potential on Γ. Now let Δ_{h} be the usual second-order discrete Laplacian on Ω_{h} and let τ^{h} be the truncation error

$$
\begin{equation*}
\Delta_{h} g=\tau^{h} \quad \text { on } \Omega_{h} \tag{6}
\end{equation*}
$$

Smereka constructs the weights w^{h} from expressions for τ^{h}, using Mayo's technique [7,8]. At a regular grid point $i h \in \Omega_{h}$, for which the stencil of Δ_{h} does not cross $\Gamma, \tau^{h}(i h)=\mathrm{O}\left(h^{2}\right)$ as usual. At an irregular grid point, τ^{h} is larger. It can be found to $\mathrm{O}(h)$ using the jumps in first and second derivatives of g; see (30) in [10]. These in turn can be expressed in derivatives of the normal and tangent vectors to Γ. (See (41), (47) in [10] for \mathbb{R}^{2} and Section 7.2 for \mathbb{R}^{3}.) Thus τ^{h} has the form

$$
\begin{equation*}
\Delta_{h} g=\tau^{h}=w^{h}+\mathrm{O}_{\Gamma}(h)+\mathrm{O}\left(h^{2}\right) \quad \text { on } \Omega_{h}, \tag{7}
\end{equation*}
$$

where w^{h} is known analytically and w^{h} and $\mathrm{O}_{\Gamma}(h)$ are nonzero only at the irregular points. The errors are uniform. Smereka shows how to write w^{h} in terms of a level set function; see (45) and Section 7 in [10].

To prove that (2) is valid, we may assume f is nonzero only in a neighborhood of Γ, as well as smooth. We begin by writing

$$
\begin{equation*}
\int_{\Gamma} f \mathrm{~d} S=\int_{\Omega} f \delta_{\Gamma} \mathrm{d} x=\int_{\Omega} f \Delta g \mathrm{~d} x=\int_{\Omega} g \Delta f \mathrm{~d} x . \tag{8}
\end{equation*}
$$

(This could be rewritten in an equivalent way using the jump conditions (5) rather than δ_{Γ}).
Next we replace the last integral by a sum over grid points. We check that

$$
\begin{equation*}
\int_{\Omega} g \Delta f \mathrm{~d} x=\sum_{i h \in \Omega_{h}} g(i h)(\Delta f)(i h) h^{3}+\mathrm{O}\left(h^{2}\right) \tag{9}
\end{equation*}
$$

by comparing the integral over the cell centered at $i h$ with the term in the sum. If the cell intersects Γ, the error in the integrand is $\mathrm{O}(h)$, since g is continuous and has bounded derivative. There are $\mathrm{O}\left(h^{-2}\right)$ such cells, contributing a total error of $\mathrm{O}\left(h \cdot h^{3} \cdot h^{-2}\right)=\mathrm{O}\left(h^{2}\right)$. On each remaining cell the error in the integral is $\mathrm{O}\left(h^{2} \cdot h^{3}\right)$, since g and Δf are C^{2}. The total error for these cells is $\mathrm{O}\left(h^{2} \cdot h^{3} \cdot h^{-3}\right)=\mathrm{O}\left(h^{2}\right)$ and the claim (9) is verified.

We now have

$$
\begin{equation*}
\int_{\Gamma} f \mathrm{~d} S=\sum_{\Omega_{h}} g \Delta f h^{3}+\mathrm{O}\left(h^{2}\right)=\sum_{\Omega_{h}} g \Delta_{h} f h^{3}+\mathrm{O}\left(h^{2}\right) \tag{10}
\end{equation*}
$$

since $\Delta_{h} f=\Delta f+\mathrm{O}\left(h^{2}\right)$. We can sum by parts and use (7) to obtain

$$
\begin{equation*}
\sum_{\Omega_{h}} g \Delta_{h} f h^{3}=\sum_{\Omega_{h}}\left(\Delta_{h} g\right) f h^{3}=\sum_{\Omega_{h}}\left(w^{h}+\mathrm{O}_{\Gamma}(h)+\mathrm{O}\left(h^{2}\right)\right) f h^{3} . \tag{11}
\end{equation*}
$$

The $\mathrm{O}_{\Gamma}(h)$ error contributes a term of order $h \cdot h^{3} \cdot h^{-2}=h^{2}$ and thus is negligible, as is the other error inside. Combining (10) and (11), we arrive at the conclusion (2).

The fact that the integral is accurate to $\mathrm{O}\left(h^{2}\right)$ although $\tau^{h}=\mathrm{O}(h)$ on the irregular points is related to a gain in accuracy that has long been noted for solutions of elliptic problems using the methods of [3-5,7,8,13]. Proofs of this phenomenon have been given in $[1,4,9]$ and elsewhere. Closely related to the Green's function g solving (4) is the discrete version g^{h} which solves

$$
\begin{equation*}
\Delta_{h} g^{h}=w^{h} \quad \text { in } \Omega_{h}, \quad g=0 \quad \text { on } \partial \Omega_{h} . \tag{12}
\end{equation*}
$$

In fact $g^{h}-g=\mathbf{O}\left(h^{2}\right)$ uniformly; this follows from analytical results in $[1,9]$.

Acknowledgment

This material is based upon work supported by the National Science Foundation under grant DMS0404765.

References

[1] J.T. Beale, A. Layton, On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (2006) 91-119. http://www.camcos.org.
[2] B. Engquist, A.-K. Tornberg, R. Tsai, Discretization of Dirac delta functions in level set methods, J. Comput. Phys. 207 (2005) 28-51.
[3] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994) 1019-1044.
[4] Z. Li, K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput. 23 (2001) 339-361.
[5] Z. Li, K. Ito, The Immersed Interface Method, SIAM, Philadelphia, 2006.
[6] X.-D. Liu, R. Fedkiw, M. Kang, A boundary condition capturing method for Poisson's equation on irregular domains, J. Comput. Phys. 160 (2000) 151-178.
[7] A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285-299.
[8] A. Mayo, The rapid evaluation of volume integrals of potential theory on general regions, J. Comput. Phys. 100 (1992) 236-245.
[9] V. Rutka, Immersed Interface Methods for Elliptic Boundary Value Problems, Dissertation, T.U. Kaiserslautern, 2005.
[10] P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 7790.
[11] A.-K. Tornberg, B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys. 200 (2004) 462-488.
[12] J. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915-931.
[13] A. Wiegmann, K.P. Bube, The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J. Numer. Anal. 37 (2000) 827-862.

[^0]: DOI of original article: 10.1016/j.jcp.2005.05.005.
 E-mail address: beale@math.duke.edu
 URL: http://math.duke.edu/faculty/beale

